referaty.sk – Všetko čo študent potrebuje
Elvíra
Štvrtok, 21. novembra 2024
Tvorba obrazu
Dátum pridania: 02.10.2007 Oznámkuj: 12345
Autor referátu: ladybeatle
 
Jazyk: Slovenčina Počet slov: 1 919
Referát vhodný pre: Gymnázium Počet A4: 5.7
Priemerná známka: 2.99 Rýchle čítanie: 9m 30s
Pomalé čítanie: 14m 15s
 

LCD monitory sa stávajú trendom poslednej doby a čoskoro začnú zatlačovať klasické CRT (katódové) monitory do ústrania. Vyrobiť TFT displej s aktívnou maticou je veľmi komplikovaná vec, ktorá by sa dala prirovnať k výrobe procesorov. Displeje sa skladajú z veľmi tenkých vrstiev skla, ktorých vzdialenosti musia byť presné a ku každému bodu je priradený tranzistor (odtial TFT = Thin Film Transistor). Pretože tranzistorov je na moderných TFT displejoch mnoho v rádoch milióny, je výroba náročná a výťaznosť klesá s rastúcou uhlopriečkou.

Princíp funkcie TFT LCD displejov

Pre začiatok by som rád uviedol, že technológia, ktorú si dnes predstavíme, je iba súčasťou trhu s plochými displejmi. Medzi tento sortiment výrobkov môžeme zaradiť taktiež LED (Light Emitting Diode), FED(Field Emission Displays), LTPS (Low Temperature Polysilicon) alebo PDP (Plasma Displays) displeje, ktoré majú vlastné vyžarovanie a podsvietenie LCD displeja s pasívnou maticou (STN). My sa budeme zaoberať podsvetlenými LCD displejmi s aktívnou TFT maticou.

Každý obrazový bod (teda pixel) je aktívne ovládaný jedným tranzistorom. Aby vznikol obraz, potrebujeme dve zložky – svetlo a farbu. Svetlo je zaistené podsvietujucími katódami, ktoré sú u týchto displejov velmi jasné. Primárne ide o svetlo a je na LCD technológii, aby vyprodukovala vyslednú farbu. Ako iste poznáte z optiky, akúkoľvek farbu môžeme zložiť z troch farebných zložiek – červenej, zelenej a modrej. A pre každú farebnú zložku každého pixelu existuje jeden tranzistor ovládajuci tekuté kryštály.

Tekuté kryštály sú materiály, ktoré pod vplivom elektického napätia menia svoju molekulárnu štruktúru a vďaka tomu určujú množstvo prechádzajúceho svetla. Každý obrazový bod je ohraničený dvoma polarizačnými filtrami, farebným filtrom (pre červenú,zelenú alebo modrú) a dvoma vyrovnávacími vrstvami, všetko je vymedzené tenkými sklenenými
panelmi.
Tranzistor patriaci k obrazovému bodu kontroluje napätie, ktoré prechádza vyrovnávacími vrstvami a elektrické pole zpôsobí zmenu štruktúry tekutého kryštálu a ovplivní natočenie jeho častí.

A to už sme u základného princípu. Týmto zpôsobom možme kryštál regulovať v nekoľko desiatkách až stovkách rôznych stavou a tak výsledný jas farebných odtieňov. Pretože sa obrazový bod skladá z troch farebných sub-pixelov, vznikajú tak státisíce a ž milióny rôznych farieb, aj keď tekuté kryštály stále nie sú presné, aby dokázali zobraziť 32-bitovú farebnú hľbku, teda 16,777,216 farieb.

Na prvom obrázku je zachitená situácia, keď je tekutý kryštál v základnom stave (bez prechádzajuceho napätia). V tomto prípade je svetlo natočené takým spôsobom, že môže prejsť druhým polarizačným filtrom a v konečnom dôsledku prechádza plný jas pdsvecujúcich katód.

Na druhom obrázku je znázonená situácia, keď prechádza možné napätie a svetlo je pohlcované polarizačným filtrom. Dôsledkom tejto situácie by mala byť čierna.

Ako som povedal v skutočnosti sa každý pixel skladá s troch sub-pixelov. Tieto body sú usporiadané horizontálne na seba, a tak v prípade natívneho (prorodzeného) rozlišenia displeja 1600x1200 je vedľa seba v skutočnosti 4800 sub-pixelov. Šírka týchto bodov musí byť samozrejme veľmi malá a pohybuje sa štandardne v rozmedzí cca 0,24-0,29mm, u najvyspelejších panelov môže klesnúť až na 0,12mm. Rozptyl bodov takisto ovlivňuje maximálne rozlišenie pri dannej uhlopriečke, a preto sa iba výnimočne objavujú malé monitory s vysokým rozlišením.
 
späť späť   1  |   2   
 
Copyright © 1999-2019 News and Media Holding, a.s.
Všetky práva vyhradené. Publikovanie alebo šírenie obsahu je zakázané bez predchádzajúceho súhlasu.