F je sila ťahu (hnacia sila) pôsobiaca na raketu. Z tejto rovnice vidíme, že hnacia sila rakety je výsledkom vymrštenia hmoty horúcich plynov @m v časovom intervale @t (@m/@t) a rýchlosti plynov v vzhľadom na raketu. Táto hnacia sila zrýchľuje raketu a na dosiahnutie konečnej rýchlosti musí byť čo najväčšia. Toto sa dá dosiahnuť buď zvyšovaním rýchlosti v vymrštených plynov vzhľadom na raketu alebo zvýšením množstva vymrštených plynov za časový interval @m/@t. Veľkosť rýchlosti sa dá zvýšiť vhodným tvarovaním vnútra raketového motora alebo používaním paliva, ktoré horí pri vyšších teplotách. Obe tieto riešenia majú však svoje medze. Prvé vyžaduje zmenšenie prierezu otvoru, kadiaľ unikajú výfukové plyny.
Keď urobíme prierez veľmi malý, zväčšíme rýchlosť, ale len na úkor znižovania @m/@v. Limit spaľovania vo vyšších teplotách je daný bodom topenia vnútrajšku motora rakety. Na praktické využitie je najvvyšššia rýchlosť vymršťovania plynov, ktorú môžeme dosiahnuť, v intervale medzi 2,00.103 a 2,5 .103 m/s. Ďalšie zvýšenie hnacej sily rakety si vyžaduje upraviť pomer vymrštených plynov v danom časovom intervale (@m/@t). Najvyššiu hnaciu silu by sme dosiahli, keby bolo všetko palivo spálené naraz a vymrštené v najkratšom časovom intervale, ale v takom prípade by raketa musela vydržať obrovské zrýchlenie. Užitočné zaťaženie techniky a kozmonautov má horné medze zrýchlenia bez trvalého zničenia. Rovnica M @V = (@m)v nám určuje limity zrýchlenia rýchlosti. Môžeme to zapísať rovnicou
M @V = -(@M) v
Z tejto rovnice sa dá odvodiť konečná rýchlosť rakety
Vf = v ln Mo/Mr,
kde sme predpokladali V=0 v čase t=0. Konečná rýchlosť Vf preto závisí od prirodzeného logaritmu pomeru počiatočnej a konečnej hmotnosti rakety. Na dosiahnutie veľkej konečnej rýchlosti musí byť spálené veľké množstvo počiatočnej hmotnosti. Úniková rýchlosť na opustenie Zeme je okolo 11,2 km/s. Jednostupňová raketa by potrebovala na dosiahnutie tejto rýchlosti pomer M0/MR rovný približne 180. To znamená, že by len okolo 0,5% z celkovej hmotnosti rakety mohlo byť užitočné zaťaženie a nádrž na skladovanie paliva. V skutočnosti, keď berieme do úvahy odpor vzduchu a gravitačnú silu, počiatočná hmotnosť pre užitočné zaťaženie tvorí potom iba 0,25%. To znamená dve možnosti: buď veľmi malý náklad alebo veľmi veľkú raketu.
Na zmenšenie veľkosti rakety a zväčšenie užitočného zaťaženia boli vyprojektované viacstupňové rakety, ktoré postupne zanechávajú svoje oddeliteľné časti tak, ako sa spaľuje palivo. Rakety musia byť taktiež stabilné. Také dlhé, tenké teleso ako raketa s veľkou silou pôsobiacou pri štarte na jej konci spôsobuje, že raketa má tendenciu prevrátiť sa. U rakiet používaných ako zbrane sa tento problém rieši upevnením dlhej tyče na raketu, ktorá zabraňuje rotácii vo vzduchu. Pre veľké rakety to nie je praktické riešenie, a preto je potrebný systém, ktorý zabraňuje rakete prevrátiť sa a upravuje jej hnaciu silu tak, aby sa dal korigovať smer jej pohybu. Väčšinu prvých problémov s veľkými raketami vyriešil americký fyzik Robert H. Goddard. Zlepšil tvar spaľovacej komory a vymyslel systém, ktorý zabraňuje jej roztopeniu. Tento systém sa ešte stále používa. Tekuté palivo cirkuluje v špirálach okolo vonkajších stien spaľovacej komory na ceste k vstreknutiu a spáleniu. Taktiež vymyslel gyroskopy, ktoré odhalia malé bočné zrýchlenia a skorigujú pohyb rakety aktivovaním lopatiek, ktoré odkláňajú výfukové plyny rakety.
To bol predchodca systému použitého počas 2. svetovej vojny pri V2. Vo väčšine dnešných rakiet je problém stability vyriešený takým uchytením motora, že sa dokáže natočiť v rôznych smeroch, a tým korigovať smer pohybu. Asi najlepší doteraz vyvinutý je systém použitý pri raketopláne. Dve pomocné rakety na pevné palivo vyrobia 11,6 MN každá, aby napomohli pri štarte a pri dosiahnutí potrebného zrýchlenia. Každý z troch hlavných raketových motorov na tekuté palivo vyprodukuje 2,1 MN hnacej sily. Tento systém je komplikovaný, lebo tri motory raketoplánu na tekuté palivo, ktoré možno riadiť, sú potrebné na korekciu ťahu dvoch pomocných rakiet na tuhé palivo. Za niekoľko sekúnd musia tieto motory prejsť z takmer nulového výkonu na skoro plný výkon. Len keď je isté, že motory na tekuté palivo idú hladko, môže počítač zapnúť motory na pevné palivo. Keď sú raz zapálené, nemôžu byť vypnuté, dokým nevyhorí všetko palivo. To bolo príčinou katastrofy amerického Challengeru, ktorý mal v jednej z pomocných rakiet bočný otvor. Keby sa počas letu odpojil raketoplán od pomocných rakiet, znamenalo by to taktiež katastrofu. S tým, ako je postupne vymrštenej viac a viac hmoty, konštantný ťah pomocných rakiet produkuje stále väčšie zrýchlenie.
Zaujímavosti o referátoch
Ďaľšie referáty z kategórie