Plazma
Plazma je skupenství, v němž se nachází jakákoliv hmota zahřátá na dostatečně vysokou teplotu (to znamená, že tepelný pohyb částic hmoty v sobě nese značnou kinetickou energii; teplota a tepelná energie částic značí totiž v termodynamice totéž). Často se tak vedle tří známých skupenství, kterými hmota při zahřívání postupně prochází (pevné, kapalné, plynné), hovoří i o skupenství čtvrtém, plazmatickém. Co je to dostatečně vysoká teplota a jak hmota v tomto skupenství vypadá? Je to teplota, při níž se částice plynu pohybují již tak rychle, že se začínají svými vzájemnými srážkami "rozbíjet" na kladně nabitá jádra a záporně nabité elektrony. Místo známého plynu skládajícího se z elektricky neutrálních atomů tím tedy vzniká směs "plynů" dvou, tvořených částicemi majícími opačné elektrické náboje (ionty a elektrony). Teplota potřebná k tomuto procesu je srovnatelná s vazební energií elektronů v atomech a musí dosahovat, vyjádřeno ve stupních, desítek až stovek tisíc stupňů. Není proto divu, že hmota se vyskytuje na Zemi v přirozeném plazmatickém stavu jen velmi vzácně (např. blesk). Jinak je tomu však, vezme-li se v úvahu celý Vesmír. V něm tvoří "studené" planety jen zlomek celkové hmoty, zatímco kolem 99% veškeré hmoty se naopak nachází ve stavu plazmatu.
Neřízená termonukleární reakce
V pozemských podmínkách byly termonukleární reakce uskutečněny nejprve pouze jako neregulovatelné a lavinovité exploze, při nichž se během milióntin vteřiny uvolňuje nesmírné množství energie. Tyto reakce se uskutečňují pouze jako termonukleární zbraně. Náloží může být směs kapalného deuteria a tritia, rozbuškou je obyčejná atomová bomba. Značné výhod má i reakce lithia s deuteriem. V tomto případě tvoří výbušnou směs pevná látka – deuterid lithia LiD. V reálných podmínkách probíhá reakce s LiD složitěji, než bylo dříve uvedeno. Nedojde k přímému splynutí lithiových jader s deuteriovými, ale k vzniku tritia z lithia a potom teprve k realizaci termonukleární syntézy tritia s deuteriem.
Řízená termonukleární reakce
K vytvoření kontrolovaného termonukleárního energetického zdroje v pozemských měřítkách je třeba vybrat a získat vhodné palivo – nejlépe směs deuteria s tritiem nebo jen deuterium, což se předpokládá u fúzních reaktorů druhé generace.
Výroba termonukleárního paliva není v podstatě nijak obtížná. Deuterium získáme elektrolýzou těžké vody, a tuto vodu zase elektrolýzou obyčejné vody. Zásoby deuteria jsou prakticky nevyčerpatelné. Tritium vzniká v jaderných reaktorech ozařováním lithia neutrony:
3Li6 + 0n1 2He4 + 1T3
Dalším krokem je získání vysokoteplotního plazmatu. K tomu se používá několika metod:
Rázové vlny. Jedním z nejjednodušších způsobů, jak získat vysokoteplotní plazma, je metoda rázových vln. Trubice se naplní určitým plynem o nevysokém tlaku. Na jednom konci trubice, uvnitř malého prostoru odděleného od ostatního kovovou přepážkou, je výbušná směs. Při její explozi se přepážka roztrhne a tlaková vlna se šíří trubicí. Nejvyšší teplota vzniká při rázu plynu na protilehlé straně trubice. Dosahuje se tak teploty desetitisíců stupňů.
K metodám rázových vln patří způsoby získávání vysokých teplot pomocí kumulativních výbuchů. Na nádobku obsahující směs tritia s deuteriem se soustředí výbuchy konvenční výbušniny. Vzniká teplota postačující vyvolat termonukleární syntézu jak typu D+T, tak i v LiD.
Exploze drátků. Druhou metodou je metoda explodování tenkých drátků. Ve vakuu napneme mezi dvěma elektrodami tenký drát a necháme jím z kondenzátoru protéci mohutný proudový impuls. Drát se při okamžitém uvolnění vysoké energie vypaří; vznikne plazma o vysoké teplotě.
Mikrovlnné záření. Novou metodou je také způsob, kdy je palivová směs ozařována elektromagnetickým zářením o vysoké energii (mikrovlny, laser, …). Tento způsob se zdá zatím výhodný. V poslední době se experimentuje i s přenosem energie pomocí ultrazvuku.
Dnes se nejvíce používá způsob Vstřikování neutrálních svazků (NBI): Do proudu plazmatu v reaktoru jsou vstřikovány neutrální atomy vodíku, tritia nebo deuteria, kterým je udělena velká počáteční rychlost. Neutrální atomy mohou prostupovat magnetickým polem, které udržují plazma (viz níže). Předávají svou energii plazmatu a tím ho ohřívají, zároveň jde o způsob dodávání paliva do reaktoru.
Na tokamaku JET jsou instalovány dva systémy s neutrálními svazky, každý o délce pulsu 10s. Každý systém má osm zdrojů svazku.